Aircraft Performance: Atmospheric Pressure

FAA Handbook of Aeronautical Knowledge
Chap 10
Atmosphere

• Envelope surrounds earth
• Air has mass, weight, indefinite shape
• Atmosphere
 – 78% Nitrogen
 – 21% Oxygen
 – 1% other gases (argon, helium, etc)
• Most oxygen < 35,000 ft
Atmospheric Pressure

• Factors in:
 – Weather
 – Aerodynamic Lift
 – Flight Instrument
 • Altimeter
 • Vertical Speed Indicator
 • Airspeed Indicator
 • Manifold Pressure Guage
Pressure

• Air has mass
 – Affected by gravity
• Air has weight \rightarrow Force
• Under Standard Atmospheric conditions
 – at Sea Level weight of atmosphere = 14.7 psi
• As air become less dense:
 – Reduces engine power (engine takes in less air)
 – Reduces thrust (propeller is less efficient in thin air)
 – Reduces Lift (thin air exerts less force on the airfoils)
International Standard Atmosphere (ISA)

• Standard atmosphere at Sea level:
 – Temperature 59 degrees F (15 degrees C)
 – Pressure 29.92 in Hg (1013.2 mb)

• Standard Temp Lapse Rate
 – -3.5 degrees F (or 2 degrees C) per 1000 ft altitude gain
 • Upto 36,000 ft (then constant)

• Standard Pressure Lapse Rate
 – -1 in Hg per 1000 ft altitude gain
Non-standard Conditions

• Correction factors must be applied

• Note: aircraft performance is compared and evaluated with respect to standard conditions

• Note: instruments calibrated for standard conditions
Pressure Altitude

- Height above Standard Datum Plane (SDP)

- If the Barometric Reference Setting on the Altimeter is set to 29.92 in Hg, then the altitude is defined by the ISA standard pressure readings (see Figure 10-2, pg 10-3)
Density Altitude

• Used for correlating aerodynamic performance
• Density altitude = pressure altitude corrected for non-standard temperature
• Density Altitude is vertical distance above sea-level (in standard conditions) at which a given density is to be found
• Aircraft performance increases as Density of air increases (lower density altitude)
• Aircraft performance decreases as Density of air decreases (higher density altitude)
Density Altitude

1. Find pressure altitude
2. Correct altitude for non-standard conditions (i.e. Outside Air Temperature)
3. Read of Density Altitude
 • Note: a given pressure altitude may exist for a range of temperature by allowing density to vary
 • Note: A known density occurs for only one temperature and pressure
Density Altitude - Example

• Altimeter set to 29.92 in Hg, shows altitude of 5000’ when temperature is at standard temp
• Altimeters set to 29.92 in Hg, shows altitude of 7000’ when temperature is +20 degrees C above standard
High Density Altitude (worse performance)

- High elevations
- Low atmospheric pressures
- High temperatures
Low Density Altitude (better performance)

- Lower elevations
- High atmospheric pressure
- Low humidity
Ideal Gas Law

• $D = \frac{\text{Mass}}{\text{Volume}}$

• Density of a Gas = Molar Mass \bullet Pressure / Universal Gas Constant \bullet Temp
 - Density is proportional to pressure
 - Density is inversely proportional to temperature

• $PV = nrT$
 - Pressure
 - Volume
 - Temperature
 - $n, r =$ constants
Effects of Pressure on Density

• Density is proportional to Pressure
 – At constant temperature
 • 2 X pressure = 2 X density
 • ½ X pressure = ½ X density
Effect of Temp on Density

- Density varies inversely with Temperature
 - Increasing temp decreases density
 - Decreasing temp increases density
Effect of Humidity on Density

• Water vapor is lighter than air
 – Moist air lighter than dry air

• Humidity increases \Rightarrow Air density decreases
 – Reduces performance

• Humidity defined as % of maximum amount of water the air can hold
 – Varies with temperature
 • Warm air holds more water vapor
 • Cold air holds less water vapor