Home Work:

1. a. Discuss the following Airline Profit Strategies intended benefits and potential pitfalls
 i. Cutting Fares/ Yields
 ii. Increasing Fares/ Yields
 iii. Increase Flights (ASM)
 iv. Decrease Flights (ASM)
 v. Improve Passenger Service Quality
 vi. Reduce Passenger Service Quality

 b. i. Which strategy would be favorable, given a Price Elasticity of Demand of -.8 (Ep = -.8)
 ii. Which strategy would be favorable, given a Price Elasticity of Demand of -1.2 (Ep = -1.2)

2. Given the following Airline Market Example, Calculate the following:

<table>
<thead>
<tr>
<th>Market</th>
<th>Itinerary</th>
<th>Segment / Leg</th>
<th>Airline</th>
<th>Seats</th>
<th>PAX</th>
<th>Connect PAX</th>
<th>Traffic Connect</th>
<th>% Connecting</th>
<th>Load Factor</th>
<th>Daily Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAD-BOS</td>
<td>IAD-BOS</td>
<td>IAD-BOS</td>
<td>Airline 1</td>
<td>200</td>
<td>140</td>
<td>N/A</td>
<td>50</td>
<td>N/A</td>
<td>0.70</td>
<td>3</td>
</tr>
<tr>
<td>IAD-BOS</td>
<td>IAD-PHL</td>
<td>IAD-PHL</td>
<td>Airline 1</td>
<td>150</td>
<td>125</td>
<td>75</td>
<td>50</td>
<td>75%</td>
<td>0.83</td>
<td>5</td>
</tr>
<tr>
<td>IAD-BOS</td>
<td>IAD-PHL</td>
<td>PHL-BOS</td>
<td>Airline 1</td>
<td>150</td>
<td>75</td>
<td>N/A</td>
<td>75</td>
<td>N/A</td>
<td>0.50</td>
<td>5</td>
</tr>
<tr>
<td>IAD-BOS</td>
<td>IAD-JFK</td>
<td>IAD-JFK</td>
<td>Airline 2</td>
<td>250</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>50%</td>
<td>0.80</td>
<td>7</td>
</tr>
<tr>
<td>IAD-BOS</td>
<td>IAD-JFK</td>
<td>JFK-BOS</td>
<td>Airline 2</td>
<td>150</td>
<td>100</td>
<td>N/A</td>
<td>100</td>
<td>N/A</td>
<td>0.67</td>
<td>7</td>
</tr>
<tr>
<td>IAD-BOS</td>
<td>IAD-BOS</td>
<td>IAD-BOS</td>
<td>Airline 2</td>
<td>100</td>
<td>80</td>
<td>N/A</td>
<td>80</td>
<td>N/A</td>
<td>0.80</td>
<td>2</td>
</tr>
<tr>
<td>IAD-PIT</td>
<td>IAD-BOS</td>
<td>IAD-BOS</td>
<td>Airline 2</td>
<td>200</td>
<td>150</td>
<td>75</td>
<td>75</td>
<td>50%</td>
<td>0.75</td>
<td>4</td>
</tr>
<tr>
<td>IAD-PIT</td>
<td>IAD-PIT</td>
<td>BOS-PIT</td>
<td>Airline 2</td>
<td>150</td>
<td>75</td>
<td>N/A</td>
<td>75</td>
<td>N/A</td>
<td>0.50</td>
<td>4</td>
</tr>
</tbody>
</table>

 a. For this example no additional passengers are boarding at the connection
 b. Frequency Share for IAD-BOS =
 c. Market Share for IAD-BOS =
 d. “Market” O-D Traffic for IAD-BOS =
 e. “Segment” or “Leg” O-D Supply for IAD-BOS =
 f. RPM =
 g. ASM =
 h. ALLF for IAD-BOS =
 i. ALF for this network – for this example all flight legs are 1 unit of distance
3. For the Market Demand Function plot Demand (y-axis) versus Total Trip Time (x-axis) for the following example of the PHX-LAS Market:
 \[D = M \times P^a \times T^b \]
 a. \(M = \) The Market sizing parameter is 200,000
 b. \(P = \) The average price of travel is $40
 c. \(T = \) Plot Demand versus Total Trip Time for Total trip time values of 40 through 70 minutes. (plot all 31 minutes).
 d. Plot 4 curves on the same graph for the four different types of travelers below:
 i. \(E_p = a = -.8, \ E_t = b = -.8 \)
 ii. \(E_p = a = -.8, \ E_t = b = -1.2 \)
 iii. \(E_p = a = -1.2, \ E_t = b = -.8 \)
 iv. \(E_p = a = -1.2, \ E_t = b = -1.2 \)
 e. Explain the differences between the curves from the perspective of the different segments of travel demand