Learning Objectives:

The student will know the following terminology:

- Airline Pricing and O-D Markets
 - Pricing
 - Regulated Pricing
 - “Deregulated” or Liberalized Pricing
 - Revenue Management
 - Theoretical Pricing Strategies
 - Cost-Based Pricing
 - Demand Based Pricing
 - Service Based Pricing
 - Price Discrimination vs. Product Differentiation
 - Price Discrimination
 - Product Differentiation
 - “Willingness to Pay” (WTP)
 - Differential Pricing Model
- Airline Differential Pricing / Market Segmentation
 - First Class, Business Class, and Economy
 - Restrictions on Lower Fares
 - Advance Purchase, Minimum stay, cancellation fees and change fees
 - Saturday night stay condition most effective
 - Disutility
 - Simplified Fare structures
 - Impacts on Differential Pricing Model
- Airline Revenue Management (RM)
 - Differential Pricing
 - Yield Management
 - Computerized RM Systems
 - 3rd Generation RM System
 - Revenue Management Techniques
 - Overbooking
 - Physical Capacity (CAP) - Actual # of seats on the flight, usually maximum capacity of the aircraft
 - Authorized Capacity (AU) - Maximum # of bookings that an airline is willing to accept
 - Confirmed Bookings (BKD) - BKD <= AU - Total # of passenger reservations that have been accepted
 - No Show Rate (NSR) - Mean % of passengers with confirmed bookings that do not show up
 - Denied Boarding’s (DB)
 - Spoilage (SP)
 - Show up Rate (SUR)
 - Waitlisted passengers (WL)
• Go-show passengers (GS)
• Stand-by passengers (SB)
• No-shows (NS)
• Show-ups (SU)
• Passengers Boarded (PAX)
• Voluntary DB (VOLDB)
• Overbooking Models
 o Mathematical overbooking problem, Find OV > 1.00 such that
 AU = CAP * OV
 o Manual/Judgmental Approach, AU = 100*OV = 100*(1+NSR)
 o Deterministic Model, AU = CAP/(1-NSR)
 o Probabilistic/Risk Model,
 AU = CAP/((1-NSR) + 1.645 STD)
• Fare Class Mix (Flight leg Optimization)
 • Partitioned vs. Serial Nesting
• Traffic Flow (O-D) Control (Network Optimization)
 • “fare class control”:
 o High-yield (“full”) fare types in top booking classes
 o Lower yield (“discount”) fares in lower classes
 • Yield-Based Fare Class Structure
 • The O-D Control Mechanism
 o Revenue value buckets (“greedy approach”)
 o EMSR heuristic bid price
 o Displacement adjusted virtual nesting
 o Network “optimal” bid price control

The student will be able to perform the following analysis (i.e. problems):

• Discuss Airline Pricing Strategies
• Discuss Airline Differential Pricing Methods
 o Impacts on Differential Pricing Model
• Discuss Airline Revenue Management Techniques
 o Overbooking Models
 o Fare Class Mix (Flight leg Optimization)
 o Traffic Flow (O-D) Control (Network Optimization)
• Identify from Diagram
 o Different components of Computerized RM Systems
• Calculate
 o Authorized Capacity (AU) for different Overbooking Models
 o Revenue from the Differential Pricing Model