Time Series Analysis of Aviation Data

Dr. Richard Xie

February, 2012
What is a Time Series

• A *time series* is a sequence of observations in chronological order, such as
 – Daily closing price of stock MSFT in the past ten years
 – Weekly unemployment claims in the past 2 years
 – Monthly airline revenue passenger miles in the past ten years

• Time series analysis is useful when
 – No other data available
 – System too complicated to model in detail
Where to Get the Data?

Customize Table

(Includes U.S. Air Carrier Passenger and Cargo Services)

- **Geographic Area:**
 - Domestic
 - International
 - System (domestic and international) [on]

- **Schedule Type:**
 - Scheduled
 - Non-Scheduled
 - Total [on]

- **Service Class:**
 - Passenger
 - Cargo [on]

Operating Statistics:

- Passenger Enplanements
- Freight Ton Miles
- Departures Performed (Flights)
- Revenue Passenger Miles
- Total Revenue Ton Miles
- Revenue Aircraft Miles Flown
- Available Seat Miles
- Available Ton Miles
- Revenue Aircraft Hours (Airborne)

Table

<table>
<thead>
<tr>
<th>YYYYMM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-96</td>
<td>41,972,194</td>
</tr>
<tr>
<td>Feb-96</td>
<td>42,054,796</td>
</tr>
<tr>
<td>Mar-96</td>
<td>50,443,045</td>
</tr>
<tr>
<td>Apr-96</td>
<td>47,112,397</td>
</tr>
<tr>
<td>May-96</td>
<td>49,118,248</td>
</tr>
<tr>
<td>Jun-96</td>
<td>52,880,510</td>
</tr>
<tr>
<td>Jul-96</td>
<td>55,664,750</td>
</tr>
<tr>
<td>Aug-96</td>
<td>57,723,208</td>
</tr>
<tr>
<td>Sep-96</td>
<td>47,035,464</td>
</tr>
<tr>
<td>Oct-96</td>
<td>49,263,120</td>
</tr>
<tr>
<td>Nov-96</td>
<td>43,937,074</td>
</tr>
<tr>
<td>Dec-96</td>
<td>48,539,606</td>
</tr>
<tr>
<td>Jan-97</td>
<td>45,850,623</td>
</tr>
<tr>
<td>Feb-97</td>
<td>42,838,949</td>
</tr>
<tr>
<td>Mar-97</td>
<td>53,620,994</td>
</tr>
<tr>
<td>Apr-97</td>
<td>49,282,817</td>
</tr>
<tr>
<td>May-97</td>
<td>51,191,842</td>
</tr>
<tr>
<td>Jun-97</td>
<td>54,707,221</td>
</tr>
<tr>
<td>Jul-97</td>
<td>57,995,025</td>
</tr>
<tr>
<td>Aug-97</td>
<td>59,715,433</td>
</tr>
</tbody>
</table>
What Information Are You Interested In?

• How the data changes from month to month, year to year?
 – Any trend?
 – How fluctuated the curve is?
 – Any seasonal effects?
 – Any unusual years-months which have significantly small or large number?

• Can we forecast future value based on the time series?
Let’s Work on the Data

• But first, what tool will you use?
 – Pencil and quadrille pad (or back of an envelope)
 – Excel
 – Matlab, Mathematica, Maple
 – SAS, SPSS, STATA, R
 – ROOT, PAW, KNIME, Data Applied, etc.
 – Others
Use R!

• R is free
• R is a language, not just a statistical tool
• R makes graphics and visualization of the best quality
• A flexible statistical analysis toolkit
• Access to powerful, cutting-edge analytics
• A robust, vibrant community
• Unlimited possibilities
Where to Download R

• To download R
 – Go to http://www.r-project.org/
 – Choose a CRAN Mirror, such as http://cran.cnr.berkeley.edu/
 – Click the link to download R according to your operating system (Linux, MacOS X, or Windows)

• Or Enhanced Version of R Distributed by 3rd Party
 – Revolution R Community
 (http://www.revolutionanalytics.com/products/revolution-r.php)
 – Free academic version of Revolution R Enterprise

CRAN: Comprehensive R Archive Network
R References

- *An Introduction to R*, W.N.Venables, D.M.Smith and R Development Core Team
- More Documents/Tutorials, go to
 - http://cran.cnr.berkeley.edu/other-docs.html
Start an R Project

- Recommend using RStudio as the console (http://rstudio.org/download/)
- Create a project folder for storing R scripts, data, etc.
 - e.g. C:/Users/xie/Documents/SYST460/R projects/airline_timeseries
- Open RStudio, navigate to the project folder

1. Use `getwd()` to find out the current working directory
2. Click and select the project folder
3. Click here
4. Current working directory is changed

2. Click and select the project folder
3. Click here
Work on Data, Finally!

- Use Ctr+Shft+N to create a new script
- `> rm(list=ls(all=TRUE))` to clear the existing variables in workspace, if any
- `> rpm = read.csv("System Passenger - Revenue Passenger Miles (Jan 1996 - Oct 2011).csv")`
- Use Ctr+Enter to run the current line or selection
What the Data Looks Like?

- \texttt{> ls(rpm)}

 \texttt{> ls(rpm)}

 \texttt{[1] "Total" "YYYYMM"}

- \texttt{> plot(rpm)}, equivalent to

- \texttt{> plot(rpm$Total \sim rpm$YYYYMM)}
Plot It As A Time Series

- \(\text{rpm.ts} = \text{ts(as.numeric(rpm$Total), start = c(1996,01), freq=12)} \)
- \(\text{plot(rpm.ts, ylab='Revenue Passenger Miles')} \)

Commands to check properties of \textit{rpm.ts}

\begin{verbatim}
> class(rpm.ts)
[1] "ts"
> start(rpm.ts)
[1] 1996 1
> end(rpm.ts)
[1] 2011 10
> frequency(rpm.ts)
[1] 12
> summary(rpm.ts)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
38600000 53220000 60110000 60390000 66320000 81420000
\end{verbatim}
Trends and Seasonal Variation

- `layout(1:2)`
- `plot(aggregate(rpm.ts))`
- `boxplot(rpm.ts~cycle(rpm.ts))`

Overall trend of increasing over years
Window Function

- Extract a part of the time series between specified start and end points
 - `rpm.Feb <- window(rpm.ts, start = c(1996,02), freq = TRUE)`
 - `rpm.Aug <- window(rpm.ts, start = c(1996,08), freq = TRUE)`
- `mean(rpm.Feb)/mean(rpm.Aug)`

```
> mean(rpm.Feb)/mean(rpm.Aug)
[1] 0.7329244
```
Modeling Time Series - Notations

- Represent a time series of length \(n \) by \(\{x_t : t = 1, \ldots, n\} = \{x_1, x_2, \ldots, x_n\} \)
- A time series model is a sequence of random variables, and the observed time series is considered a realization from the model.
- \(\bar{x} \) means sample mean: \(\bar{x} = \frac{\sum x_i}{n} \)
- \(\hat{x} \) means a forecast: \(\hat{x}_{t+k|t} \) is the forecast made at time \(t \) for the value at \((t+k) \)
Modeling Time Series – Decomposition Models

• Additive Decomposition Model
 \[x_t = m_t + s_t + z_t \]

• Multiplicative Decomposition Model
 \[x_t = m_t \times s_t + z_t \]

which can be converted to an additive model as
 \[\log(x_t) = m'_t + s'_t + z'_t \]

If \(\{x_t\} \) are positive.
Time Series Decomposition in R

- `rpm.decom <- decompose(rpm.ts)`
- `plot(rpm.decom)`

Decomposition of additive time series

\[x_t = m_t + s_t + z_t \]
Auto-Correlation

- Population auto-covariance:
 \[\gamma_k = E[(x_t - u)(x_{t+k} - u)] \]

- Population auto-correlation:
 \[\rho_k = \frac{\gamma_k}{\sigma^2}, \sigma^2 \text{ is population variance} \]

- Sample auto-covariance:
 \[c_k = \frac{1}{n} \sum_{t=1}^{n-k} (x_t - \bar{x})(x_{t+k} - \bar{x}) \]
AutoCorrelation and Correlogram

- \(rpm.acf = \text{acf}(\text{as.numeric}(rpm.ts), \text{lag.max}=40) \)
Correlogram after Decomposition

• `>acf(as.numeric(rpm.decom$random), na.action=na.omit, lag.max=40)`
Regression

• Trends: stochastic trends, deterministic trends
• Deterministic trends and seasonal variation can be modeled using regression
• Deterministic trends are often used for prediction
• Time series regression differs from standard regression as time series tends to be serially correlated
Linear Models

- \(x_t = a_0 + a_1 u_{1,t} + a_2 u_{2,t} + \cdots + a_m u_{m,t} + z_t \)
- “Linear” is referenced to the summation of model parameters
- Examples:
 - \(x_t = a_0 + a_1 t + a_2 t^2 + \cdots + a_p t_p + z_t \)
 - \(x_t = a_0 + a_1 t + z_t \)
Fit A Linear Regression Model

- \(\text{fit} = \text{lm}(\text{rpm.ts} \sim \text{time(\text{rpm.ts})}) \)
- \(\text{plot(\text{rpm.ts, type="o", ylab="RPM"})} \)
- \(\text{abline(fit)} \)
Diagnostic Plots

- `hist(resid(fit))`
- `acf(resid(fit))`
- `AIC(fit)`

> AIC(fit)

[1] 6518.944
Linear Model with Seasonal Variables

- Additive Seasonal Indicator
 \[x_t = m_t + s_t + z_t \]

- For example, a time series with monthly observation starting from January:

 \[x_t = \alpha_1 t + s_t + z_t = \begin{cases}
 \alpha_1 t + \beta_1 + z_t & t = 1, 13, \ldots \\
 \alpha_1 t + \beta_2 + z_t & t = 2, 14, \ldots \\
 \vdots & \\
 \alpha_1 t + \beta_{12} + z_t & t = 12, 24, \ldots
\end{cases} \]
Linear Model with Seasonal Variables - \(R \)

- \(> \ Seas = cycle(rpm.ts) \)
 - Gives the positions in the cycle of each obsv.

- \(> \ Time = time(rpm.ts) \)
 - Creates the vector of times at which \(rpm.ts \) was sampled

- \(> \ rpm.lm = lm(rpm.ts \sim 0 + Time + \text{factor}(Seas)) \)
 - Fit \(rpm.ts \) to the linear model with seasonal variables
Take a Look at \textit{rpm.lm}

- \texttt{summary(rpm.lm)}

```r
> summary(rpm.lm)

Call:
\texttt{lm(formula = rpm.ts ~ 0 + Time + factor(Seas))}

Residuals:
  Min     1Q  Median     3Q    Max
-13851942 -2461380  273581  2822312  5518156

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
Time                   1.433e+06  5.730e+04  25.00  <2e-16 ***
factor(Seas)1    -2.816e+09  1.148e+08  -24.53  <2e-16 ***
factor(Seas)2    -2.820e+09  1.148e+08  -24.56  <2e-16 ***
factor(Seas)3    -2.808e+09  1.148e+08  -24.45  <2e-16 ***
factor(Seas)4    -2.811e+09  1.148e+08  -24.48  <2e-16 ***
factor(Seas)5    -2.809e+09  1.148e+08  -24.46  <2e-16 ***
factor(Seas)6    -2.804e+09  1.148e+08  -24.42  <2e-16 ***
factor(Seas)7    -2.800e+09  1.148e+08  -24.39  <2e-16 ***
factor(Seas)8    -2.802e+09  1.148e+08  -24.40  <2e-16 ***
factor(Seas)9    -2.815e+09  1.148e+08  -24.51  <2e-16 ***
factor(Seas)10  -2.812e+09  1.149e+08  -24.48  <2e-16 ***
factor(Seas)11  -2.815e+09  1.148e+08  -24.52  <2e-16 ***
factor(Seas)12  -2.813e+09  1.148e+08  -24.50  <2e-16 ***
---
Signif. codes:  \texttt{0 \red{**} \red{**} \red{**}\red{0.001 \red{**} \red{0.01 \red{0.05 \red{0.1 \red{1

Residual standard error: 3606000 on 177 degrees of freedom
Multiple R-squared: 0.9968, Adjusted R-squared: 0.9965
F-statistic: 4187 on 13 and 177 DF, p-value: < 2.2e-16
```
Correlogram of rpm.lm Residual

- `acf(resid(rpm.lm), lag.max=40)`

It indicates strong positive autocorrelation. Residuals are not pure random numbers, so it should be further modeled.
A time series \{w_t: t = 1, 2, \ldots, n\} is discrete white noise (DWN) if the variables \(w_1, w_2, \ldots, w_n\) are independent and identically distributed with a mean of zero.

This implies that the variables all have the same variance \(\sigma^2\) and \(\text{Cor}(w_i, w_j) = 0\) for all \(i \neq j\).

If, in addition, the variables also follow a normal distribution (i.e., \(w_t \sim \text{N}(0, \sigma^2)\)) the series is called Gaussian white noise.
Simulate White Noise in \textit{R}

- \texttt{> set.seed(1)}
- \texttt{> w = rnorm(100)}
- \texttt{> plot(w, type = "l")}
- \texttt{> acf(w)}
Random Walk

Let \(\{x_t\} \) be a time series. Then \(\{x_t\} \) is a random walk if

- \(x_t = x_{t-1} + w_t \)

where \(\{w_t\} \) is a white noise series. Substituting \(x_{t-1} = x_{t-2} + w_{t-1} \) and then substituting for \(x_{t-2} \), followed by \(x_{t-3} \) and so on gives:

- \(x_t = w_t + w_{t-1} + w_{t-2} + \ldots \)

In practice, the series will start at some time \(t = 1 \). Hence,

- \(x_t = w_1 + w_2 + \ldots + w_t \)
Simulate A Random Walk in R

- \(x \leftarrow w \leftarrow \text{rnorm}(1000) \)
- \(\text{for } (t \text{ in } 2:1000) x[t] \leftarrow x[t - 1] + w[t] \)
- \(\text{plot}(x, \text{type} = \"l\") \)
- \(\text{acf}(x) \)

Your plot will be different for sure!
Stationarity

- **Strict stationary**
 - the joint statistical distribution of x_{t_1}, \ldots, x_{t_n} is the same as the joint distribution of $x_{t_{m+1}}, \ldots, x_{t_{m+n}}$ for all t_1, \ldots, t_n and m, so that the distribution is unchanged after an arbitrary time shift.

- **Second-order stationary**
 - Mean and standard deviation are constant in time
 - Autocorrelation depends only on the lag

- **Non-stationary time series**
Auto-Regressive (AR) Models

- The series \(\{x_t\} \) is an autoregressive process of order \(p \), abbreviated to AR(\(p \)), if
 \[
x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \ldots + \alpha_p x_{t-p} + w_t
 \]
 where \(\{w_t\} \) is white noise and the \(\alpha_i \) are the model parameters with \(\alpha_p \neq 0 \) for an order \(p \) process.

- The model is a regression of \(x_t \) on past terms from the same series; hence the use of the term ‘autoregressive’.
Fit an AR Model

- `res.ar = ar(resid(rpm.lm), method = "ols")`
- `acf(res.ar$res[-(1:3)])`

\[x_t = 0.7153x_{t-1} + 0.1010x_{t-2} + 0.0579x_{t-3} + w_t \]

OLS: Ordinary Least Square
Moving Average Model

- A moving average (MA) process of order q is a linear combination of the current white noise term and the q most recent past white noise terms and is defined by
- $x_t = w_t + \beta_1 w_{t-1} + \cdots + \beta_q w_{t-q}$
- $\{x_t\}$ is a stationary process because $\{w_t\}$’s are stationary
Simulate an MA Process

- `set.seed(1)`
- `b <- c(0.8, 0.6, 0.4)`
- `x <- w <- rnorm(1000)`
- `for (t in 4:1000) {
 for (j in 1:3) x[t] <- x[t] + b[j] * w[t - j]
}
- `plot(x, type = "l")`
- `acf(x)`
Plot Results

Simulated MA Process

Correlogram of the Simulated MA Process

First 3 lags with significant correlation
ARMA Model

• A time series \(\{x_t\} \) follows an autoregressive moving average (ARMA) process of order \((p, q)\), denoted ARMA\((p, q)\), when

\[
x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \cdots + \alpha_p x_{t-p} \\
 + \beta_1 w_{t-1} + \beta_2 w_{t-2} + \cdots + \beta_q w_{t-q}
\]

where \(\{w_t\} \) is white noise

• AR\((p)\) is ARMA\((p,0)\)
Fit An ARMA Model

• \(> \text{rpm.arma} = \text{arima(rpm.ts, order}=c(1,0,1)) \)
• \(> \text{acf(as.numeric(rpm.arma$resid))} \)

Strong seasonal information left in residuals
ARIMA and SARIMA Model

- A time series \(\{x_t\} \) follows an ARIMA\((p, d, q)\) process if the \(d^\text{th}\) differences of the \(\{x_t\}\) series are an ARMA\((p, q)\) process.
- SARIMA is Seasonal ARIMA model which extends ARIMA model with seasonal terms.
Fit A SARIMA Model

- $rpm\cdot arima=rpm\cdot ts, order=c(1,1,1), seas=list(order=c(1,0,0), 12)$
 - First $c(1,1,1)$: AR(1), first-order difference, MA(1)
 - Second $c(1,0,0)$: seasonal terms on AR process, frequency 12
- $> acf(as.numeric(rpm\cdot arima$\cdot resid))$
Forecast

• Predicting future values of a time series, x_{n+m}, using the set of present and past values of the time series, $x = \{x_n, x_{n-1}, \ldots, x_1\}$

• The minimum mean square error predictor of x_{n+m} is $x_{n+m}^n = E(x_{n+m}|x)$

• `predict(model, newdata)` method
 – `model`: a model object used for prediction
 – `newdata`: value of explanatory variables
Forecast in R

- `> new.t <- seq(2011.750, len = 2 * 12, by = 1/12)`
- `> new.dat <- data.frame(Time = new.t, Seas = rep(1:12, 2))`
- `> rpm.pred = ts(predict(rpm.lm, new.dat)[1:24], start = c(2011,11), freq = 12)`
- `> ts.plot(rpm.ts, rpm.pred, lty = 1:2)`
Plot of Forecast
Forecast with SARIMA Model

- \(ts.plot(cbind(window(rpm.ts, start = c(1996, 1)), predict(rpm.arima, 48)$pred), lty = 1:2) \)
Homework

• Download and Install \textit{R} with Rstudio
• Read \textit{An Introduction to R}
• Download System Passenger - Revenue Aircraft Miles Flown (000) (Jan 1996 - Oct 2011) data from BTS
• Read the data into \textit{R} using Rstudio
• Create a time series plot of the data, and plot its auto-correlation correlogram
• Decompose the time series and save the plot
Homework (Ctd.)

• Construct a linear regression model without seasonal factors, and plot the correlogram of the model’s residual data.

• Construct a linear regression model with seasonal factors, and identifies the characteristics of the model residual.

• Fit an AR model to the model residual of the above model.

• Forecast the time series data into next 24 months using the seasonal model.
Exam Questions

• What are the data elements in a time series?
• What does auto-correlation mean?
• What are white noise and random walk?
• What are stationary models and non-stationary models?