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Abstract—Investment in the NextGen National Airspace
System (NAS) is intended to increase the effective capacity of
the airspace and airports. Previous research, in several domains,
has identified cases where large infrastructure investments were
under-utilized due to migration and/or adaptation of users (e.g.
airlines).

This paper examines the impact of airline ‘“gaming” on the
use of trans-continental routes. Two airlines with equal cost
structures are given options for two trans-continental routes
each with different distances. In the base case, the airlines
conform to the rules of an air traffic controller and are assigned
to the routes to balance traffic. In other cases, airlines select a
preferred route based on information about the length of the
route, and the length of the departure queue. The airlines act as
independent agents, and each scenario is repeated several times
to account for the stochastic elements in the simulation. The
results indicate a tradeoff between utilization of the resources
and cost to the users. Results also indicate that alternate
strategies could migrate closer to the optimal tradeoff between
utilization and user costs. The implications of these results are
discussed.

Index Terms—Multi-agent simulation, airline gaming, optimal
traffic management, airline strategies

I. INTRODUCTION

The Air Transportation System of the United States is
showing signs of saturation in the form of increasing flight
and passenger delays, cancellations, and diversions [3].
Some of the reasons are temporal reductions in the capacity
due to weather, and over-scheduling. Weather creates over-
scheduling by abruptly and unexpectedly reducing capacity.
Also, over-scheduling is the result of the current set of rules
that allow the airlines define their own schedules [3]. Clearly,
mitigating or eliminating problems due to over-scheduling is
an effective way to improve the performance of the system.

Game Theory predicts that all the airlines define their
schedules to include as many flights as possible to capture
the largest market share. No airline will see any incentive
in unilaterally changing its schedule to reduce congestion.
The fear of loosing market share due to the “Tragedy of the
Commons” is too big. Since all airlines have the same goal,
and all are “rational agents” according to Russell and Norvig
[10], the strategy profile is a Nash Equilibrium. However,

some games can perform better than the Nash Equilibrium if
the agents share information [5][9][8]. All the agents could
simultaneously use different strategies [10] or other forms of
interaction as described by Ferber [2]. The rules of the game
can be changed to limit the “greed” of the agents for the
sake of the global improvements. Slot auctions [3] and the
so-called congestion pricing as explained by Neufville and
QOdini [6] are two of these rule-changing techniques intended
that could reduce congestion.

Changes to the air transportation system require careful
analysis. Creating tools to evaluate the potential effects of
the changes is an import research goal [13][4][12]. This
paper uses a multi-agent-based simulation to model airlines
operations and infrastructure utilization in the presence
of airline route selection strategies. Currently, air traffic
controllers assign route slots to the aircraft with one criterion
only: traffic balancing. This strategy is called first come-first
served (FCEFS). The main hypothesis of the paper is that
strategies other than FCFS can improve the performance of
the current system and give more flexibility to the airlines.
Performance in this case is defined in terms of utilization of
the route slots and in terms of aggregated airline cost.
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Fig. 1. Pareto frontier to guide the optimization efforts.

Figure 1 shows that the simulation demonstrated that



FCFS achieves the best utilization of the route slots. Other
strategies can achieve good performance if they use more
information to make decisions. But they can only approach
the performance of FCFS. In terms of cost, other strategies
can perform better than FCFS under certain circumstances.
The results will be explained in more detail in the paper.

The paper is organized as follows. The problem description
section of the paper describes in more detail and explains the
parameters of the simulation. The method section describes the
experiments: the tools, software, and how the results will be
analyzed. The next two sections describe the results obtained
and the conclusions and some future work.

II. PROBLEM DESCRIPTION
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Fig. 2. Conceptual diagram of the situation modeled.

The problem analyzed in this study is an abstraction of
a real situation in the field of air transportation (see Figure
2). Aircraft scheduled to depart from several airports on
one side of the country can choose from a set of alternate
trans-continental routes to their common destination airport
(or multiplex) on the other side of the country. In the
real world, air traffic controllers must assign routes to the
aircraft, so that the traffic is balanced among routes, in a
first come-first served discipline. The routes are divided into
slots due to safety rules (separation distances). The controller
assigns a route to the flight before allowing the flight to
enter the route. Usually, aircraft wait on the ground until the
controllers allow them to fly just-in-time to enter an available
slot in a route. Sometimes this delay on the ground has other
reasons like weather, security, and mechanical problems.
Regardless of the reasons, ground delays can be modeled
by departure queues. Delays imply wait times and costs for
passengers and airlines, but they are consequences of the need
for synchronization between different parts of the system.
Once an aircraft enters a route, it flies at a fairly constant
speed to maintain separation with the other aircraft flying the
same route.

When modeling this situation it is assumed that aircraft
push back from the gates either on-time or with a push back
delay that is exponentially distributed. The delays on the
ground described before are represented by a virtual entry
queue, or entry queue for short, associated to a route. Each
route has its own entry queue that consolidates the departure
delays of all the aircraft assigned to the route across all
airports. The queues are also divided into slots the same way
routes are. The entry queue is virtually located before the
so-called virtual entry fix which is the point in which all the
aircraft enter the route (see Figure 2). The number of slots
from the entry fix to the destination is called the route length.
In this study, all slots are either 5 minutes (for time slots) or
25 nm (for distance slots). A constant speed of 300 nm/h is
assumed for flying aircraft so that it takes 5 minutes to fly
25 nm. Under this conditions, an air traffic controller will
make the aircraft wait on the ground (modeled by waiting
in the entry queue) after they push back until there is an
open slot in a route. When there is an open slot the flight
will be assigned a route and it will enter the entry queue
and, later, the route following the sequence created by the
queue. If more resources or information were available, as
it is proposed by NextGen (SEVEN, SWIM [1]) either the
controller or the airlines themselves could decide which route
to choose based on criteria other than the balance of route
traffic.

For the first come-first served discipline, the controller is
modeled by airlines that chose a route based only on the
length of the virtual entry queue, the aircraft is assigned to the
shortest queue. This is basically what the controllers do: they
try to balance traffic by equally distributing flights among the
routes. Therefore, the simulation does not contain an explicit
“controller agent”, the behavior of the airlines implement
the tasks of a controller as they are today. This behavior is
called conforming (or FCFS) since it conforms to the current
rules of the air transportation system. Situations in which the
airlines have more information to decide, and can game the
system, are represented by the other strategies: minimum cost
(MinCost), and minimum cost with feedback (MinCostFB).
The MinCost behavior chooses always the shortest route to
minimize the flying cost. The MinCostFB chooses the route
to minimize the cost of flying plus the cost of waiting in the
queue. The feedback part is the cost of waiting: choosing the
shortest route (as in MinCost) generates long waiting queues
and the cost of waiting becomes important in the decision.
Theoretically, the airlines described above behave like rational
agents [10]. They show “greedy” behavior since they decide
based on local information only: no system-wide, historic or
future information is considered to decide. In this situation
all airlines have the same objective of maximizing profit by
minimizing cost. Airlines can use their own strategies and
tactics to win this partially informed game. In some cases
the decisions of the airlines will result in under-utilization of
some resources and congestion in others. The goal of this
study is to evaluate the effects of several strategies of the
airlines in the utilization of the routes and the aggregated
airline cost of the operations.



The independent variables in this study are:

o the behavior of the airline, which can be FCFS, MinCost
or MinCostFB;

o the flight schedule of the airline. It is flat (one flight per
slot) for all scenarios and contains 30 consecutive flights
for each airline;

o the nature of the push back delay, which could be
constant (zero in this case) or exponentially distributed
either with A = 3 slots, equivalent to 15 minutes in
average, or A = 5 slots, equivalent 25 minutes in average;

o the distance of each alternate route measured in 25 nm
slots. This is an integer number from 39 to 75 slots (from
975 nm to 1875 nm). One of the routes remains constant
at 57 slots (1425 nm ~ great circle distance from DEN
to JFK) through all the scenarios;

o the cost of flying each mile (for each airline), which is
normalized to 1.0 for all airlines;

o the cost of waiting in queue (for each airline), which is
relative to the cost of flying and can take one of three
values: 0.3, 0.5, or 0.7. This cost is also the same for all
airlines;

o the cost of the push back delay, which is the same as the
cost of waiting for these experiments.

The dependent variables are: total unused route slots, and
the total cost for the whole system. Total delay can also be
a dependent variable, but the results show that it behaves the
same way as the number of unused route slots. Then it will
not be presented here. The same variables could be measured
individually for each airline, but that comparison is out of the
scope of this study.

III. METHOD

These experiments are simulated using the MASON discrete
event multi-agent simulation platform [11]'. MASON is a
free, open-source, Java library designed and implemented at
George Mason University and it is comparable to Swarm?,
Repast®, NetLogo*, StarLogo’, Arena®, Simula’, Psim%, As-
cape’, and many other tools. Considering the small number
of agents involved in the situation being modeled, MASON is
more powerful than necessary, but it provides an easy-to-use
framework to do multi-agent simulations and to support future

planned experiments.

A. The simulation model

The environment of the airlines, i.e. the Air Transportation
System, is represented in the simulation by a Java class called
Universe (see Figure 3) that extends the MASON class called

ISee http://cs.gmu.edu/ eclab/projects/mason/ for more information.
Zhttp://www.swarm.org/index.php/Main_Page
3http://repast.sourceforge.net/

“http://ccl.northwestern.edu/netlogo/
Shttp://education.mit.edu/starlogo/
Shttp://www.systemsnavigator.com/sn_website/?q=node/38
http://en.wikipedia.org/wiki/Simula

8http://www.powersys.ft/

%http://ascape.sourceforge.net/

SimState. This class is required in any MASON simulation.
It initializes the simulation, creates, and schedules the agents.
Objects of this class can also be used as shared memory for the
communication between agents. The method public start() of
the this class is where the actual execution starts. Classes that
implement the Steppable interface are the agents of the system.
The interface requires the method step() to be implemented.
This method is executed once every step for each of the active
agents. The order in which the step method is executed is
random among the agents. Agents can be grouped to guarantee
that all the agents of a group get their step method executed
before or after the step method of agents in other groups. The
BasicAirline abstract class for the basis for the all the airline
agents. A direct descendant of this this class must implement
the myBehavior() abstract method, and use the step method
implementation of BasicAirline. In general, the myBehavior
method is implemented as follows:

o If there is no flight scheduled for the current time or if
the airline has used all its aircrafts then return a special
value (i.e.: finish the current execution of the method) to
signal that there was no decision in terms of which route
was chosen;

« Sort the routes in ascending order according to the length
of their entry queues (FCFS), cost of flying the route
(MinCost), or aggregated cost of waiting on the ground
(entry queue length) and flying the route (MinCostFB):
smaller value first. Therefore, the only change between
airlines is in the objective function to minimize;

o If there is a tie in the smaller values, pick any of the tied
routes randomly (uniform distribution). This is one of the
sources of uncertainty in the simulation. Another source
is that the airline agents are processed in a random order.
But this one is compensated because the airlines do not
change the state of the system but after all of them have
being processed;

o Communicate the decision by sending the flight to the
intents list of the route. Return the index (id number) of
the selected route.

Each airline is represented by an object that has a schedule
associated. The schedule is represented by a FlightSchedule
object (see Figure 3). The profile of the schedule through
time can be modified. In these experiments, all the schedules
are flat: one flight per time slot, per airline, until all the flights
of the airline are used. The push back delays are generated
in this class too, before the simulation takes place. The delay
could be intentional (ground delay programs) or unintentional
(missing crew, technical problem). The probability distribution
of this type of delay is usually exponential, but it could also
be constant (usually zero).

A trans-continental route is represented by a Route agent
(see Figure 3). The agent is composed by three objects:
a queue to represent the flights en-route, another queue to
represent the virtual entry queue, and a list of intents (of the
flights assigned to this queue but not in it yet). The virtual
entry fix queue is a representation of the sequence in which
flights must enter the route when they reach the entry point.
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Fig. 3. Class diagram of the simulation model.
TABLE 1

The route itself, after the entry point, is also represented by
a queue; the implications are that flights travel at the same
speed (300 nm/h), there are no passings en-route, the route is
divided in slots of the 25 nm each. The behavior of the route
is as follows:

o All the flights in the intents list are pushed into the entry
queue. Also the cost and delay for each flight are com-
puted and aggregated to the total for the corresponding
airline;

« If the oldest flight has reached the end of the route (its
maximum length) remove it;

« If the entry queue is not empty, remove the oldest flight
from it and push it into the route. The cost of flying
the route is computed and aggregated to the total of the
corresponding airline. If the queue is empty, push a null
(special) value into the route to signal that there is an
unused slot there.

Table I shows the great circle distances between some
airports and JFK and their equivalent number of 25 nm slots.
This table is given for reference only and to give and to
explain the choice of some of the values in the simulations.

The Inspector agent (see Figure 3) computes the total
number of unused slots for all the routes. The number of

GREAT CIRCLE DISTANCES AND NUMBER OF SLOTS FROM SEVERAL
AIRPORTS TO THE NEW YORK JOHN F. KENNEDY AIRPORT (JFK)

Origin airport Great circle dis- | Number of slots (5

tance (nm) min & 25 nm/slot at
300 ks)

Denver International | 1413 57

(DEN)

Salt Lake City (SLC) 1729 69

Phoenix (PHX) 1871 75

Los Angles International | 2151 86

(LAX)

unused slots for a route is the number of times a null value
is pushed into the flights en-route queue. The Inspector
object starts counting unused slots from the time slot of
the first scheduled flight across all airlines. The Inspector
object stops counting slots when all the airlines have sent all
their scheduled flights, none of the flights is delayed in push
back, and all the entry queues are empty. In every step of
the simulation the value of the total number of unused slots
is stored into the database, but only the last one is used in
further analyses.



The DatabaseHandler agent (see Figure 3) stores the
current state of the simulation in a database. The object
allows several databases since it uses the JDBC technology.
The current version of the code can use MS-SQL Server
databases and MS-Access files.

B. Experimental design

This study consists of nine experiments. Each experiment
is divided into several scenarios. And each scenario is
repeated several times (Monte Carlo simulation) to account
for the stochastic nature of the simulation. The combination
of the two independent variables (behavior and push back
delay) defines an experiment. The scenario is defined by the
combination of two variables (distance and cost of waiting,
since cost of flying is always 1.0).

The distance of one route is set to 57 slots for all the
scenarios and the other route (only two routes are used in
these experiments) varies from 39 to 75 for a total of 19 x 3
= 57 scenarios per experiment. The reason to use two routes
is ease of results analysis. The reason to use a range of 39 to
75 for one route is to keep the route distance ratio reasonably
close to 1.0; alternate routes are usually not very much longer
or shorter that the original route. In these experiments the
ratio of distances between the two routes goes from 1.32 to
0.68. The cost of waiting has an infinite number of possible
values, but in these experiments only three values are used to
observe the effect of this price in the decisions of the airlines.
It is assumed that the behavior of the other values can be
extrapolated from the behavior of these three values.

Each repetition of a scenario starts with the same pa-
rameters and conditions except for the seed of the internal
random number generator of MASON and the seed of the
random number generator of the push back delay generator.
Both random number generators are implementations of the
Mersenne Twister Fast algorithm [7] and their seeds are Java
long numbers. These two different seeds mean that when there
is a tie in costs during the decision making process of an
airline, the decision will be different among repetitions. It also
means that an individual flight would be delayed differently
among repetitions. Every scenario is executed 30 times and
the mean value of the executions is recorded. Every repetition
of the simulation iterates for 70 time steps'’.

IV. RESULTS

Since there are two dependent variables in the experiments,
the results are presented in two sets of charts. Each chart
compares the three strategies for the 19 scenarios (route
distance ratios) corresponding to a particular wait to fly cost
ratio. Each scenario is repeated 30 times and the values
shown in the charts are the mean of these repetitions. As
stated before all the schedules are flat and contain 30 flights.

10The number of steps is actually a parameter of the simulation, but it is
fixed to 70 for all these experiments.

Several experiments were made by changing the values of
the push back delay to 0 (no delay), 3 slots (15 minutes) in
average, and 5 slots (25 minutes) in average. The difference
in the dependent variables is not significant and therefore
only the results for 5 slots in average are shown here. Since
the delays behave the same way as the utilization, but with
different numerical values. So delay charts will not be shown
here.

The first set of charts shows the unused route slots. The
second set of charts shows that cost for the whole system.

A. Total unused route slots

The following charts show the average total unused route
slots. Each chart compares the three strategies (behaviors)
FCFS, MinCost, and MinCostFB as functions of the route
distance ratio. The difference between the charts is the “Wait
to fly cost ratio”.
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Fig. 4. Average total unused route slots (Wait to fly cost ratio = 0.3).

Figure 4 shows FCFS as the best strategy. The air traffic
controller balances the utilization of the routes in the best
possible way. This is because the controller does not consider
any cost to make the decisions, but only the traffic. The
other two strategies leave many route slots unused when
the route distance ratio is very high or very low. This is
because MinCost selects only the shortest route and leaves
the longest one completely unused. That is also the reason
for the improvement in utilization when the distance ratio
is 1; where this strategy chooses randomly any route. The
effect of the random choice is a better balance in the traffic.
The performance of MinCost never reaches the level of FCFS.

When one route is 18% longer or shorter than the other,
i.e. when the distance ratio is 0.82 or 1.18, MinCostFB starts
using both routes and reducing the number of unused slots.
In fact it linearly approaches the performance of FCFS and
reaches it when the distance ratio is 1. This is because in
these points the cost of waiting in the queue is high enough
to make it profitable to fly the longest path instead of waiting
for the shortest. Furthermore, as the distance ratio approaches
one, the difference in cost of flying the two routes becomes
smaller and the price of waiting in queue is more significant
in these cases.



Average total unused route slots (Wait to fly cost ratio = 0.5)
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Fig. 5. Average total unused route slots (Wait to fly cost ratio = 0.5).

Figure 5 shows again first come-first served as the best
strategy, balancing the utilization the best possible way.
MinCostFB again leaves a route unused when the route
distance ratio is too high or too low, but it starts its linear
approach of the FCFS performance when the distance ratio is
0.72 or 1.28. In other words, when one route is 28% longer
or shorter than the other. This shows the effect of a more
costly wait time, because in the previous comparison the point
were 0.82 and 1.18. Despite of this difference, MinCostFB
reaches the performance of FCFS when the distance ratio is
1 as before. MinCost remains the same as in the previous
comparison, because the wait cost is not considered in this
strategy to make decisions.

Average total unused route slots (Wait to fly cost ratio = 0.7)
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Fig. 6. Average total unused route slots (Wait to fly cost ratio = 0.7).

Figure 6 shows again first come-first served as the best
strategy, balancing the utilization the best possible way.
The results of MinCost are the same as in the other two
comparisons due to the irrelevance of the wait cost for this
strategy. MinCostFB behaves as it did in the other two
comparisons. The linear approach starts at distance ratio
values that are out of scale because of the effect of higher
wait costs.

Table II shows the confidence intervals of a paired t-test
of these results. Each cell of the table contains the 95%
confidence interval for the comparison (difference in the
values) between two strategies for a particular wait to fly cost
ratio. Since none of the intervals includes 0, the test indicates
that each strategy is statistically different to the other two
strategies. This result means that using different strategies

effectively gives different results.

TABLE 11
PAIRED T-TEST FOR THE DIFFERENCE IN UTILIZATION OF ROUTES WITH A
CONFIDENCE OF 95%.

Wait to | 95% confidence intervals of the difference (o =
fly cost | 0.05, 19 data points)
ratio

FCFS-MinCost FCFS- MinCost-

MinCostFB MinCostFB

0.3 [-59.99, -50.59] [-51.50, -35.83] [5.00, 18.25]
0.5 [-59.97, -50.66] [-42.62, -26.83] [13.32, 27.86]
0.7 [-60.01, -50.52] [-31.56, -18.64] [23.74, 36.59]

The summary of these results is that MinCost is never
the best strategy in terms of utilization. It only achieves an
acceptable performance when the routes are of equal length.
MinCostFB is either equal or better than MinCost. FCFS is
better or equal to MinCostFB. When the route distance ratio
is too high or too low MinCostFB leaves many many slots
unused. But there is a point, defined by the wait to fly cost
ratio, from which the performance of MinCostFB starts to
linearly improve with the distance ratio until it reaches the
FCFS performance at a distance ratio of 1.

B. Total airline cost of the system

The following charts show the average total airline cost.
The cost for an airline is the summation of the cost of push
back delays, plus the cost of waiting in the queue, plus the
cost of flying a route. All costs are normalized with respect to
the cost of flying a mile. It is assumed that all aircraft are the
same size (number of passengers) and have the same type and
number of engines. The costs of waiting and flying are the
same for all airlines. The total airline cost is the summation
of cost across airlines at the end of each execution. The
average is obtained across the 30 repetitions of each scenario.

Each of the following charts compares the three strategies
FCFS, MinCost, and MinCostFB as functions of the route
distance ratio. The difference between the charts is the “Wait
to fly cost ratio”.
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Fig. 7. Average total airline cost (Wait to fly cost ratio = 0.3).

Figure 7 shows that MinCost and MinCostFB are truly
minimum cost only when the route distance ratio is very high



or very low and when the distance ratio is 1. In other cases,
FCFS is better in terms of cost. The distance ratio values
in which the cost of FCFS equals the cost of MinCost and
MinCostFB is between 0.82 and 0.86 for one side and 1.14
and 1.18 for the other side of the chart, i.e. when one route
is about 16% shorter or longer than the other. The reason for
this alternating behavior can be explained as follows. When
the route distance ratio is 1, the cost of flying the routes
makes no difference. In this case the cost of waiting is very
low and, since all the routes are utilized, no long wait queues
are expected. Then the total cost of waiting in queue should
be very low. In these conditions all the strategies are actually
selecting the route randomly and the total cost is the same
for all of them. When the distance ratio is not 1 the cost of
flying the route is determined by the shortest route in the case
of MinCost. This explains why this strategy grows linearly,
from 0.68 toward 1.0: the shortest route is becoming larger.
It also explains why the strategy results in a horizontal line
for the cost from 1.0 to 1.32, because the shortest route is
constant at 57 slots. The cost in this case includes the cost
of waiting, but this cost is the same across distance ratios
because all the aircraft fly the same route and the length of
the queue grows the same way regardless of the length of
the routes. The case of MinCostFB is more complex. In the
extremes it follows the results of MinCost. But when one
route becomes less than 16% longer or shorter than the other,
MinCostFB becomes better than MinCost, but still not as
good as FCFS. MinCostFB achieves better results in these
distance ratios because it compensates the waiting costs by
selecting longer routes sometimes; the cost of waiting is
significantly reduced. FCFS shows a linearly growing cost
with respect to the distance ratio because it just distributes
flights among the rotes and the total distance to fly grows
with the distance ratio. There are low wait costs because the
traffic is very well balanced.
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Fig. 8. Average total airline cost (Wait to fly cost ratio = 0.5).

Figure 8 shows that the FCFS strategy maintains the same
linear behavior as before, even the numerical values are the
same. This is because the cost of waiting has a minor or no
effect: there are no waiting queues. The curve for the MinCost
strategy has the same shape as before, but it is displaced
upward (higher values) because the cost of waiting is higher
in this case. When the distance ratio is 1, the cost for the

MinCost strategy is only a little higher than in the previous
comparison, but it still close to the costs of MinCostFB and
FCFS. This follows from reducing the waiting queues by
randomly selecting the route. MinCostFB is also displaced
upward. It equals the curve from MinCost until the distance of
one route is about 23% shorter or larger than the other. Then
MinCostFB starts to achieve better results than MinCost, but
not as good as FCFS. It only equals the cost of FCFS when
the distance ratio is 1.

Average total system cost (wait to fly cost ratio = 0.7)
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Fig. 9. Average total airline cost (Wait to fly cost ratio = 0.7).

Figure 9 shows a curve for the FCFS strategy that is equal
to the curve of the two previous comparisons, for the same
reasons as before. The curve for MinCost is further displaced
upward, to the level that it never performs better than FCFS.
This is because the cost of waiting is very significant in this
case and the waiting queue is very long for one of the routes.
When the distance ratio is 1, it approaches the performance
of FCFS and MinCostFB, but its value is higher there also.
In this case the strategy is selecting the route randomly and
therefore the traffic is balanced and the waiting queues are
short. The curve for MinCostFB is also further displaced
upward due to the higher waiting costs. It only reaches the
same performance of FCFS when the distance ratio is 1. This
is because in this point the strategy is actually selecting the
route randomly. It is better than MinCost except when the
one route is 32% shorter or larger than the other. This is
because MinCostFB generates shorter waiting queues than
MinCost, but as short as FCFS.

Table III shows the confidence intervals of a paired t-test
of total airline cost. Each cell of the table contains the 95%
confidence interval for the comparison (difference in the
values) between two strategies for a particular wait to fly cost
ratio. Only one of the intervals includes O: the test indicates
that FCFS is not statistically different to MinCost when the
wait to fly cost ratio is 0.3. But the strategies are different
in all the other cases. This result means that using different
strategies effectively gives different results, but in one case,
it is not possible to differentiate between two strategies.

The summary of these results is that FCFS performs the
same regardless of the wait to fly cost ratio. It is only affected
by the route distance ratio: its total cost grows linearly with



TABLE III
PAIRED T-TEST FOR THE DIFFERENCE IN TOTAL AIRLINE COST WITH A
CONFIDENCE OF 95%.

Wait to 95% confidence intervals of the difference (o =
fly cost 0.05, 19 data points)
ratio

FCFS-MinCost FCFS- MinCost-

MinCostFB MinCostFB

0.3 [-26.32, 97.57] [17.44, 113.21] [8.80, 50.64]
0.5 [-192.65,-68.25] [-63.32, -9.38] [49.53, 138.67]
0.7 [-361.75, -229.48] | [-115.18, -80.71] [130.42, 264.91]

the distance ratio. When the wait to fly cost ratio is greater
than 0.5, FCFS performs better than MinCost and MinCostFB
with the exception of the distance ratio of 1. In that ratio
MinCostFB and FCFS are equal and MinCost is only a little
more costly. Whenever the wait to fly cost ratio is 0.5 or
smaller, MinCostFB and MinCost can perform better than
FCFS when one of the routes is considerably shorter or larger
than the other; the exact percentage is determined by the wait
cost ratio: 16% for a wait to fly ratio of 0.3, 23% for a wait to
fly ratio of 0.5, and more than 32% for a wait to fly ratio of
0.7. The difference in cost among the strategies is statistically
significant in all the cases except one (highlighted in the table),
when the wait to cost ratio is 0.3 and the strategies are FCFS
and MinCostFB.

V. CONCLUSIONS AND FUTURE WORK

Balancing the traffic in the routes by using a first come-first
served (FCFS) strategy gives the best performance in terms
of utilization. But, using cost and feedback information could
help other strategies approach the performance of FCFS. The
wait to fly cost ratio and the route distance ratio define the
conditions with which MinCost and, especially, MinCostFB
can approach the FCFS performance.

Using cost information as criterion to assign routes can
lead, under certain conditions, to superior results when
compared to the costs obtained using traffic balancing. The
conditions are defined by the wait to cost ratio and the route
distance ratio.

For this reason, future research work is proposed to
create strategies that obtain cost reductions and acceptable
utilization performance by combining strategies or using more
information to make decisions. For instance, a good strategy
could exploit the knowledge about the wait to fly cost ratio
and the route distance ratio to use either FCFS or MinCostFB
strategy in search for better global performance. A change
in the objective function of the airlines, perhaps including
information about the current traffic, cost, utilization situation,
can also result in better general performance. Finally, an
agent that can learn from history and adapt is the long term
goal of the this study.

The fundamental contribution of this paper is that the
global performance of the system can be tweaked by changing
only the behavior of the individual agents. The goals of the
traffic controller (traffic balance) conflict with the goals of the

airlines (profit) and the strategies must try to optimize both
simultaneously. Figure 1 shows performance achieved by the
strategies used in the study and where the ideal situation is.
The proposed future work is intended to go to the ideal region.
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