Control Tower Procedures
Nolan, Chap 6

Control Towers

• Responsibilities:
 1. Ensure sufficient runway separation exists between aircraft landing and departing
 2. Relaying IFR clearances
 3. Providing taxi instructions
 4. Assisting airborne aircraft in vicinity of airport

• Tasks performed using two-way radio equipment
• Operated by FAA and non-federal agencies
Categories of Control Towers

• VFR Towers
 – NOT delegated separation responsibility
 • Except initial departure traffic
 – ARTCC separates IFR traffic

• Non-radar-approach control towers
 – Delegated IFR separation responsibility
 – Located in tower cab
 – Separate aircraft using non-radar procedures

• Radar-approach control towers
 – Delegated IFR separation responsibility
 – Located at base of tower
 – Separate aircraft using radar procedures

Personnel and Duties in Control Tower

• Duties:
 1. Flight Data
 2. Clearance Delivery
 3. Ground Control
 4. Local Control

• Busy airports one controller for each task
• Less busy airports one controller does more than one task
1. Flight Data Controller

- Performs clerical duties
 - Receives and relays IFR departure clearances to Clearance Delivery controller
 - Clearances from ARTCC arrive by telephone (or automated procedures)
 - Clearances written/printed on Flight Strips
 - Operating the Flight Data Processing Equipment
 - Relaying Weather and NOTAM information to other positions
 - Perform weather observations
 - PIREPS – Pilot Reports of actual conditions
 - ATIS – Automatic Terminal Information System
 - Looping tape recorded message broadcast on Frequency
 - Collecting, tabulating and storing daily records
 - Preparing ATIS recording
 - Processing field condition reports

2. Clearance Delivery Controller

- Obtaining, relaying or amending clearances
- Clearance:
 - Aircraft Identification Number
 - Clearance Limit
 - Departure Procedure
 - Route of Flight
 - Altitude
 - Departure Frequency
 - Transponder Code
- Airspace designed with Departure Area:
 - Upto 5,000’, 40° to 180°
- Once aircraft departed, contact departure controller
3. Ground Controller

- Responsible for safety of aircraft taxiing on taxiways or inactive runways
- Only in areas where traffic can be observed from Control Tower
- Aircraft location determined by:
 - Visual observation, pilot report, airport surface radar
- Positive instructions:
 - Aircraft Identification
 - Name of ground controller facility
 - Route to be used for taxi
 “United 2-1-4-Pappa-Alpha, taxi to runway 3-5 via taxiway Bravo and Charlie
 - Note: Never uses the word “cleared”
- Runway incursions
4. Local Controller

• Safely sequence arrivals and departures
 – Issues instructions for runway separation
 • Not VFR aircraft inbound to the airport
• Runway Separation Rules
 – 3 Categories of Aircraft
 Cat 1 – most single-engined aircraft
 Cat 2 – lightweight twin-engine
 Cat 3 – all other

4. Local Controller (cont.)

• Departing aircraft separation:
 – Preceding arriving aircraft has taxied off runway
 – Preceding departing aircraft is airborne, crossed the departure end of runway, and distance (Cat 3 aircraft) 6000’
• Anticipated separation
 – Assumes delays in aircraft positioning or pilot actions will result in required separation
4. Local Controller (cont.)

- Arriving Aircraft Separation
 - VFR – standardized traffic pattern
- Arriving aircraft does not cross the landing threshold until:
 - Preceding arrival has taxied off the runway
 - Preceding departure crossed departure end of runway (or airborne and distance)

4. Arrival Spacing Instructions

- Extend downwind
 - Trombone
- Short Approach
 - Shorten downwind leg
- Make Left/Right
 - S-turns to lengthen
- Go Around
- Cleared to Land
Land and Hold Short Operations (LAHSO)

- Improve runway throughput
 - Eliminate crossing runways
- Aircraft cleared to land and hold short of intersecting runway (or taxiway)
- Pilots accept/reject LAHSO clearance
 - Pilot in command has final authority

Wake Turbulence

- Wake Turbulence
 - Prop wash
 - Wake from fuselage
- Wake Vortex
 - Counter-rotating vorticies from wing-tips
 - Produced by lift generated by wing
 - Low pressure above wing, High pressure below wing
Wake Vortex Dynamics

- Strength of vortex determined by:
 - Weight (heavier)
 - Speed (slower)
 - Shape of wing

- Rotational velocity of vortex

- Vortex dynamics
 - Descend 500 feet per minute until 900’ below aircraft
 - Remain at 900’ until dissipate
 - If contact ground, move outward at 5 knots

Wake Vortex and Crosswind

- Crosswind
 - Increases speed of outward movement of downwind vortex
 - Slows speed of outward movement of upwind vortex
 - 3 – 7 knot prevents upwind vortex from moving (sits on runway until dissipates)
Wake Vortex Encounter

• Trailing aircraft encountering wake vortex:
 – experience induced roll
 • intensity of vortex forces roll moment
 – not easily corrected
 • can exceed roll authority of the aircraft
 – leads to loss of altitude
 • roll results in loss of Lift

Wake Vortex – Takeoff Procedures

• Follow aircraft departure delayed 2mins behind heavy
• Aircraft departing behind a large or heavy
 – Rotate (start to climb) before preceding aircrafts rotate point
 – Climb at greater angle (or turn upwind)
Wake Vortex – Arrival Procedures

- VFR:
 - Approach
 - Follow aircraft remain above flight path of lead aircraft
 - land beyond touchdown point of lead aircraft

FAA IFR Wake Vortex Arrival Separation Standards
- Heavy – Small: 6nm
- Heavy – 757: 5nm
- Heavy – Large: 5nm
- B757 – Small: 5nm
- Heavy – Heavy: 4nm
- B757 – Large: 4nm
- Large – Small: 4nm
Wake Vortex – Takeoff/Landing
Procedures

- Aircraft landing on parallel runways
 - < 2500 feet between runways
 - Wake vortices drift in crosswind
- Procedure
 - Follow aircraft rotate prior to rotate point of lead aircraft on other runway

Chap 6 – Control Tower Procedures

1. Define the 4 duties of controller(s) in a Control Tower
2. Describe how the Local Controller separates departing aircraft
 - Constraints
 - Rules
3. Describe how the Local Controller separates arriving aircraft
 - Constraints
 - Techniques
 - Rules
4. Describe Land and Hold Short Operations